Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/phosphatidylinositol 3-kinase signaling pathway.
نویسندگان
چکیده
Collagen VI, one of the extracellular matrix proteins, has been implicated in regulating cell proliferation and reducing apoptosis in several different systems. However, the role of collagen VI in the central nervous system remains unclear. In this manuscript, we demonstrated that upon ultraviolet (UV) irradiation, mouse primary hippocampal neurons specifically up-regulate the expression of Col6a1, Col6a2, and Col6a3 mRNA and secreted collagen VI protein. Augmentation of collagen VI mRNA and protein after UV irradiation may have a neuroprotective role as suggested by the fact that extracellular supplying soluble collagen VI protein, but not other collagen proteins, reduced UV induced DNA damage, mitochondria dysfunction, and neurite shrinkage. We also tried to determine the signaling molecules that mediate the protective effect of collagen VI via Western blot and inhibitor analysis. After collagen VI treatment, UV irradiated neurons increased phosphorylation of Akt and decreased phosphorylation of JNK. Inhibiting Akt/phosphatidylinositol 3-kinases (PI3K) pathway diminished the protective effect of collagen VI. Our study suggested a potential protective mechanism by which neurons up-regulate collagen VI production under stress conditions to activate Akt/PI3K anti-apoptotic signaling pathway.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملPhosphatidylinositol 3-Kinase- and AKT-dependent Pathways Cytotoxic Death in Human Glioblastoma via Scatter Factor/Hepatocyte Growth Factor Protects against
We have shown recently that the multifunctional growth factor, scatter factor/hepatocyte growth factor (SF/HGF), and its receptor c-met enhance the malignancy of human glioblastoma through an autocrine stimulatory loop (R. Abounader et al., J. Natl. Cancer Inst., 91: 1548–1556, 1999). This report examines the effects of SF/HGF:c-met signaling on human glioma cell responses to DNA-damaging agent...
متن کاملScatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways.
We have shown recently that the multifunctional growth factor, scatter factor/hepatocyte growth factor (SF/HGF), and its receptor c-met enhance the malignancy of human glioblastoma through an autocrine stimulatory loop (R. Abounader et al., J. Natl. Cancer Inst., 91: 1548-1556, 1999). This report examines the effects of SF/HGF:c-met signaling on human glioma cell responses to DNA-damaging agent...
متن کاملP62: Agmatine Protects Against Intracerebroventricular Streptozotocin-Induced Water Maze Memory Deficit, Hippocampal ApoptosisandAkt/GSK3β Signaling Disruption
Intracerebroventricular stereptozotocin (STZ) treatment has been described as a suitable model for sporadic Alzheimer’s disease (sAD). Centrally administered STZ decreases insulin and insulin receptors in the brain and interrupts PI3/Akt signaling pathway and GSK-3β. Additionally it raises Bax/Bcl-2 ratio and prompts hippocampal apoptosis. Agmatine, a polyamine derived from L-arginin...
متن کاملIGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2?
Current understanding of IGF-I-mediated neuroprotection implies the activation of phosphatidylinositol-3-kinase (PI-3K), which leads to the activation of Akt/Protein Kinase B. In non-neuronal cells, Akt phosphorylates and activates the transcription factor CREB, implicated in the transcription of the anti-apoptotic bcl-2 gene. This paper further analyses the anti-apoptotic IGF-I action in neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 183 شماره
صفحات -
تاریخ انتشار 2011